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The paper provides a model of turbulence which effects closure through approxi- 
mated transport equations for the Reynolds stress tensor w. and for the turbu- 
lence energy-dissipation rate E .  In  its most general form the model thus entails 
the solution of seven transport equations for turbulence quantities but contains 
only six constants to be determined by experiment. It is demonstrated that the 
proposed approximation to the pressure-rate-of-strain correlations leads to 
satisfactory predictions of the component stress levels in plane homogeneous 
turbulence, including the non-equality of the lateral and transverse normal-stress 
components. 

For boundary-layer flows a simpler version of the model is derived wherein 
transport equations are solved only for the shear stress --, the turbulence 
energy k, and E .  This model has been incorporated in the numerical solution 
procedure of Patankar & Spalding (1970) and applied to the prediction of a 
number of boundary-layer flows including examples of flow remote from walls, 
those developing along one wall and those confined within ducts. Three of the 
flows are strongly asymmetric with respect to the surface of zero shear stress and 
here the turbulent shear stress does not vanish where the mean rate of strain 
goes to zero. In  most cases the predicted profiles and other quantities accord with 
the data within the probable accuracy of the measurements. 

1. Introduction 
Over the past few years a number of general and economical numerical pro- 

cedures have been developed for solving the systems of strongly nonlinear partial 
differential equations which describe the dynamic behaviour of a viscous fluid. 
The arrival of these procedures has had (and continues to have) a two-pronged 
influence on research in turbulent flows. First, it has shifted the emphasis of 
researoh directly towards prescribing the Reynolds stresses; for the numerical 
procedures in question solve the time-averaged equations of motion which contain 
the Reynolds stresses as unknowns. Thus, such matters as parametric descrip- 
tions of mean-velocity profiles, entrainment formulae or overall mean-flow 
energy-dissipation rates (all of which, in the past fifteen years or so, have appeared 
as important components of one or more integral procedure for turbulent 
boundary layers) have taken on a consequential, rather than causative, role in 
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the evolution of the flow. Second, the very fact of being able to solve systems of 
coupled partial differential equations has stimulated the development and use of 
more elaborate closing approximations for the Reynolds stresses than had 
formerly been employed. 

Bradshaw, Ferriss & Atwell (1967) provided what was perhaps the first widely 
used boundary-layer prediction procedure in which a differential transport 
equation was used to determine the shear stress, the dependent variable in 
question being the turbulence energy. Nee & Kovaznay (1968) have also pro- 
posed a turbulence model which entails the solution of one differential equation; 
they employed the Boussinesq ' effective-viscosity ' concept with the effective 
viscosity itself appearing as the dependent variable of a differential transport 
equation. 

A limitation of these one-equation models arises from the fact that the turbu- 
lence length scale (appropriate to the energy-containing motions) which appears 
in the respective turbulence transport equations is prescribed as an algebraic 
function of position in the boundary layer. In  practice, the proposed length-scale 
functions are not widely applicable; they are not appropriate to the majority of 
flows arising outside the laboratory. Indeed, in many circumstances, if one 
neglects the effects of convection and diffusion on the length scale one might just 
as well stick to Prandtl's (1925) mixing-length hypothesis. 

A number of works have sought to provide models of wider applicability by 
supplying a transport equation from which the length scale may be determined; 
here may be mentioned, for example, the work of Harlow & Nakayama (1968), 
Rodi & Spalding (1970), Ng & Spalding (1969), Spalding (1970) and Jones & 
Launder (1972). Each of these models provides an equation for the turbulent 
kinetic energy in addition to a scale-determining equation. Closure is thus 
accomplished through the Prandtl-Kolmogorov formula for the effective turbu- 
lent viscosity vT : 

where k denotes the turbulence kinetic energy and 1 a length scale proportional 
to that of the energy-containing motions. Since an equation for the turbulence 
energy is solved, it is clearly not essential for the dependent variable of the second 
transport equation to be the length scale itself; any variable of the form k'Zb 
would be suitable. Thus Ng & Spalding and Rodi & Spalding have used an equa- 
tion for the energy-length-scale product while Harlow & Nakayama and Jones & 
Launder have preferred the energy dissipation rate, which at high turbulence 
Reynolds numbers may be interpreted as k%/Z. 

In  a number of instances turbulence models of the two-equation type have 
brought accord between experiment and prediction where hitherto there had 
been none. For example, the model of Rodi & Spalding correctly predicts the rate 
of spread of the plane mixing layer, the plane jet and the radial jet. With the 
Prandtl mixing-length model, however, the mixing length must be taken as 
7 %, 9 % and 13 % of the width of the respective flows in order that the growth 
rate of the shear flows be in agreement with experiment. Likewise, predictions of 
Jones & Launder (1972) have indicated that in a severe acceleration the length 
scale in the vicinity of a wall is diminished, causing the mean-flow properties of 

V T  = k'l, 
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the boundary layer to display features more akin to those of a laminar than those 
of a turbulent flow. Again, the results are in quantitative agreement with the 
available data. 

At the time of writing, the predictive capabilities of two-equation representa- 
tions of turbulent motion are far from fully exploited. It appears, however, that 
there are many kinds of turbulent flow whose satisfactory description will 
require a higher order closure of the Reynolds equations than is implied by the 
effective-viscosity concept. The circumstances in question are those where 
transport effects upon the Reynolds stresses are appreciable. By way of example, 
in a wall jet or in flow through an annulus, diffusive transport of shear stress 
results in the non-coincidence of the surfaces of maximum velocity and zero 
shear stress, a phenomenon which cannot elegantly be incorporated in the notion 
of an effective viscosity. 

It is the purpose of the present paper to describe the nature and the performance 
of a model of turbulence which, because it provides transport equations for the 
Reynolds stresses themselves, does not suffer from the limitations of effective- 
viscosity models. The proposed model traces its parentage to the early work of 
Rotta (1951) (and to the even earlier work of Chou (1945)). In  its most general 
form the model provides transport equations for all the Reynolds stresses but, 
for the present, experimental comparison has been restricted to two-dimensional 
boundary-layer flows wherein the influence of the normal stresses is acknowledged 
to be small. The model has therefore been simplified to one where the turbulent 
shear stress and the turbulence energy (i.e. half the sum of the normal stresses) 
are the only turbulent velocity correlations determined from transport equations. 
In  accord with the practice of Jones & Launder (1972), the length scale of turbu- 
lence is obtained from the solution of an equation for the kinematic energy- 
dissipation rate. This three-equation model of turbulence, which is developed in 
$52-4, contains only six empirical constants of which two may be determined 
from the observed decay of turbulence in the absence of mean strain. 

In  $ 5 a detailed comparison of predictions generated by the model is made with 
six substantially different nearly parallel flows, including free shear flows, 
external wall boundary layers and flows within ducts. With few exceptions, the 
predicted profiles of mean and turbulence quantities agree with the measure- 
ments within the probable accuracy of the data. 

2. The Reynolds stress equations 

stresses ui ui may be expressed in the form 
For a fluid of uniform density p the exact transport equations for the Reynolds - 

Dt 
Convection Generation Destruction 'Redistribution' 
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Equation (2.1), in common with the remainder of the paper, adopts tensor nota- 
tion with repeated suffices indicating summation. Lower and upper case u's 
denote fluctuating and time averaged velocity components respectively, p 
denotes fluctuating pressures and overbars imply the usual time averaging of the 
correlations in question. 

In  its present form of course, the Reynolds stress equation is not immediately 
employable in a model of turbulent motion; the right-hand side of (2.1) contains a 
number of correlations of turbulence quantities for whose determination a closed 
path must first be prescribed. Indeed, turbulence models may conveniently be 
categorized by reference to their treatment of (2.1). Thus the neglect of the 
convective and diffusive transport terms in (2.1) and the algebraic approximation 
of the remaining ones leads, under favourable circumstances, to the constitutive 
relation between the Reynolds stress and mean rate of strain employed by 
effective-viscosity models. If, alternatively, the transport terms are retained but, 
as above, all the unknown correlations are approximated by expressions con- 
taining mean velocity gradients, Reynolds stresses and length scales alone, then 
the level of closure is of the kind adopted by Rotta (1951), Harlow & Hirt (1969) 
and Donaldson (1968). Still higher order closures of the Reynolds stress equation 
have been proposed by Chou (1945), Davidov (1961) and Kolavandin & Vatutin 
(1969) and entail the provision of a set of transport equations for the triple 
velocity correlations "izLj"k and, for the last of the above, for the microscales of 
turbulence pertaining to the dissipation terms as well. 

The closing approximations which we adopt below place our model within the 
same category as Rotta's. We eschewed an effective-viscosity model because it 
was especially our intent to account for transport effects on the stresses. On the 
other hand, it seemed inappropriate to adopt as elaborate a treatment of the 
triple correlations as Chou's, for example, when these terms are normally of 
minor importance compared with the 'redistribution' terms in (2.1) for which 
only comparatively primitive simulations have been devised. 

The following paragraphs describe the restrictions accepted and the assump- 
tions made in order to simplify the stress equations to a practically useful form. 
The major limitation is that the model should be applicable only to those flow 
regions where the local turbulence Reynolds number is high. Under this con- 
dition, it may be presumed that the smallest scales of motion (which are pre- 
dominantly responsible for the correlation ( aui/axk)/( au,/ax,)) are isotropic. 
Consequently one replaces the dissipation term in (2.1) by 

The requirement of high Reynolds number also enables the viscous diffusion 
term in (2.1) to be dropped. The two remaining diffusion terms, however, cannot 
be dealt with so certainly. Let us consider the pressure diffusion term first. A 
companion experimental study of flow in an asymmetric plane channel (Hanjali6 
& Launder 1972) suggests that c@ZJcEx2 is small compared with the other terms 
appearing in the conservation equation for turbulence energy (x2 being the co- 
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ordinate direction normal to the planes). It may not be correct to take this single 
result as generally indicative of the unimportance of the pressure diffusion 
terms, nevertheless, in the absence of any other firm evidence, this is the assump- 
tion which is made; the term is accordingly neglected. 

We stated above our opinion that the provision of transport equations for the 
triple velocity correlations represented an inappropriate level of closure. It is, 
none the less, to the equations for that we turn to arrive at an appropriate 
algebraic simulation of the term. In  appendix A it is shown that with certain 
assumptions the triple correlations may be replaced by the following form 
containing only second-order correlations : 

where cs is a constant. The multiplier of (2.3) (ye)  may be interpreted as a time 
scale characteristic of the energy containing and (as is demonstrated in appendix 
B) of the diffusing motions. 

To complete the simulation of equation (2.1), attention is now given to the 
pressure rate-of-strain correlation 

This term is commonly referred to as a 'redistribution' term for, in the equations 
for the normal stresses (i.e. i = j), it is readily demonstrated that the term acts 
so as to diminish the difference between the normal-stress components (Hinze 
1959). Following Chou, the exact expression? for the pressure rate-of-strain 
correlation at  some point xo may be written as 

- 

pax, 13% = 'svVOl 4n [ (3%)' ax, ax, (2) + 2 ( 2 ) '  (2)' (%)I y 
= A,, 1 + h,, 2' (2.4) 

In  the above expression terms without superscripts are evaluated at xo, while 
those with a prime superscript are evaluated at  (xo + x). 

Equation (2.4) shows that the correlation in question originates from two types 
of physical process. The first part is generated from a mutual interaction between 
turbulence components, while the second arises from the mean rate of strain and 
its interaction with the turbulence. 

In  a non-isotropic homogeneous flow with small or zero mean rate of strain only 
the first part of the pressure-strain term is significant. Since such a flow will decay 
to the statistically more probable isotropic state, the process denoted above by 
&, must proceed in such a way as to equalize the normal-stress components and 
to diminish to zero the shear stresses. Such reasoning led Rotta (1951) to propose 
the following plausible form for the term: 

w,:, + $,ill = - c$,(s/k) ("Qq - s4, 2 w ,  (2.5) 

t Away from the immediate vicinity of a wall. 
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where c + ~  is a constant. Later, Rotta (1962) showed that Uberoi's (1957) data 
provided support for the above approximation, at least for i =j. Equation 
(2.5) is the form adopted here. 

Considering next the second part of the pressure-strain term, it is noted that if 
the turbulence were homogeneous (with the mean velocity varying linearly at 
right angles to its vector direction) the term q5ij, could strictly be re-expressed as 

(2.6) +if, 2 = ( 8  q / a z m )  ae , 
where 

and the 6's are the Cartesian components of the position vector x. 
In  fact, (2.6) is the form adopted in the present model; it is thus implicitly 

assumed that any inhomogeneities in the flow do not make a major contribution 
to the integral appearing in (2.4). The approximation coincides with Chou's 
proposals. It remains, of course, to prescribe a?. Neither Chou nor Rotta pro- 
posed a general form for this fourth-order tensor though both drew attention to 
the constraints, arising from symmetry and mass conservation, which its 
components must satisfy, namely 

Moreover, as Rotta (1951) observed, it follows from Green's theorem that 

u p  = 2 W i .  (2.9) 

The form of (2.8) and (2.9) suggested first that a? could be satisfactorily approxi- 
mated by a linear combination of Reynolds stresses involving one (or both) of the 
velocity components u, or ui. Equations (2.7), (2.8) and (2.9) were then sufficient 
to determine the exact form of the tensor, but the result did not agree with the 
implications of the data of Champagne, Harris & Corrsin (1970) (to which we shall 
shortly turn). Accordingly, double products of Reynolds stresses were added, the 
resultant form satisfying the symmetry requirement of (2.7) being 

u p  = a=CYlj + /3(UmCYij + msi, + -arnl + u i u l S m j )  
-- -- + (yCYm$CYlj +?jq6rnl6<j+ CYmjSil]) k:+ U ( U . m u j U i U ~ + u m u ~ U i u ~ ) / k  

+ C+2(UmUiuiUj)/k, (2.10) 
-- 

where a, /3, y, 7, u and clz are constants. In  principle the application of (2.8) and 
(2.9) enables five of the constants to be determined in terms of the sixth. If, 
however, u and c + ~  are to be non-zero, (2.9) cannot be satisfied exactly. We there- 
fore replaced at  one point the correlation w . u i i .  by wgk. With this 
substitution, the other constants may be expressed as follows in terms of c$~: 

a = ( l O - - S ~ + ~ ) / l l ,  

y = - (4- 12~+,)/55, 
/3 = -(2-6~$2)/11, 

7 = (6 -  1&$2)/55, u = -cc2. 
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The final form of the simulated equations for Reynolds stress may therefore be 
written as 

E (--8ij- 
Dt 

where, for brevity, (& + $ji)2 is used to denote the second part of the pressure- 
strain term simulated by (2.6), (2.10) and (2.11). 

Equation (2.12) contains three constants (cs, c41 and c $ ~ ) ,  which must be chosen 
by reference to experimental data. It is convenient to defer selection of the 
diffusion constant cs until $4;  appropriate values for c$, and c42 will however be 
indicated now. Uberoi’s (1957) measurements of the decay, in the absence of 

- - 
(u; - 3k)/2k (q - Qk)/2k (u,” - 3k)/2k - E 3 3  C 4 1  G4z 

2.8 0.45 0.135 - 0.085 - 0.05 0.27 
2.5 0.40 0.14 - 0.08 - 0.06 0.30 

Champagne et al. 0.14 - 0.09 - 0.05 0-33 

TABLE 1. Reynolds stresses in a homogeneous shear flow 

mean strain, of an isotropic field towards isotropy indicate (as Rotta (1962) has 
noted) that c$, should lie between about 2.6 and 3.0. A value of about 2.5 is 
suggested by the more recent data of Tucker & Reynolds (1968). To select ciz 
we consider a homogeneous turbulent field in which U, increases linearly with 
x2,  and U2 and U, are zero. For this flow E = - ~ , ( d U l / d x 2 )  and hence (2.12) may 
be reduced to the following simple algebraic forms: 

(2- #k)/2k = (4 + 1oC$,)/33(C$1 - 2C$,), 

(2 - $k)/2k = (1 - 14~$,) /33(~$,  - 2~$,) ,  

(u:- #k)/2k = - (5 - 4~+) /33(~$ ,  - 2~$,), 

(2.13) 

(2.14) 

(2.15) 
- 

Table 1 compares, for two pairs of values for c41 and c+., the values of the Rey- 
nolds stresses given by the above equations with the data of Champagne, Harris 
& Corrsin (1970). For either pair of constants, agreement between experiment 
and prediction is seen to be satisfactory, including the non-equality of the normal 
stresses 4 and q. 

3. The rate of dissipation of turbulence energy 
For the high Reynolds number flows considered here, the rate of dissipation of 

turbulence energy E ,  is equal to v(aui/axl)2. Following Davidov (1961) and Harlow 
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& Nakayama (1968) an exact transport equation for E may be constructed which 
for high Reynolds numbers may be expressed as 

(iii) (iv) (V) 

Our task here (one exactly comparable with that of 8 2) is to provide reasonable 
closing approximations of the terms on the right-hand side of (3.1) in terms of 
u.iUj, E and the mean rate of strain. Attention is turned first to the generation 
term denoted by (i). Since a contraction of the indices yields components of E the 
following approximation seems appropriate : 

where cE1 and Zcl are constants. In  fact, the term containing Zcl vanishes when 
(3.2) is multiplied by aq/ax,; thus it need not be considered further. 

Rodi (1971) has argued that term (ii), which expresses the generation rate of 
vorticity fluctuations through the self-stretching action of turbulence, should 
be considered in conjuction with term (iii), representing the decay of the 
dissipation rate ultimately through the action of viscosity. Where the Reynolds 
number is high enough for an inertial subrange to exist, the sum of terms (ii) and 
(iii) may be taken as being controlled by the dynamics of the energy cascade pro- 
cess transporting energy from low to high wavenumbers and thus as independent 
of viscosity. For dimensional homogeneity it is concluded that 

(3.3) 

There remain two terms in (3.1) to be considered, both of which express the 
influence of diffusional transport processes. Term (iv), which accounts for the 
diffusion of E from velocity fluctuations, is treated in a manner analogous to its 
counterpart in the stress equations of $2.  In  appendix A is it shown that a firm 
pruning of the exact equation for 81uk leads to the following result: 

C,k- a€ 
du, = --u u - 

8 Lax,. 
- 

(3.4) 

Term (v) represents the diffusional transport of E by pressure fluctuations. An 
exact expression for (ap/ax,) (au,/ax,) can readily be constructed which is similar 
in appearance to (2.4). Like (2.4), the resulting expression contains two groups of 
terms, one of which arises from an interaction between the mean and turbulent 
flow field and the other from a self-interaction of the turbulence. Both terms, 
however, contain higher order derivatives of the mean or fluctuating velocity 
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field than appear in (2.4). It is thus consistent with the level of closure adopted 
in the equations for Reynolds stress for these pressure diffusion terms to be 
neglected. The final form of the simulated transport equation for the energy- 
dissipation rate can thus be expressed as follows : 

(3 .5)  
Ezc,zc,aui €2 a k- a€ 

C E 2 - f C , -  - u  u - . --  - - C c 1 - - -  
DE 
Dt k ax, k ax, 0 8 %, 

The equation contains three constants which must be assigned appropriate 
values; it is this topic that we consider next. 

Measurements of the decay of turbulence behind a grid (e.g. Batchelor & 
Townsend 1948) have established that at high Reynolds numbers the turbulence 
energy level varies inversely with distance from the grid ( k  = c x ~ l ,  say, where cis a 
dimensional constant particular to the experiment in question). Now for this 
particular flow, the transport equation for k may exactly be expressed as 

U1dk/dx, = - 8 

and hence E = cU,X, -~ .  It is readily verified that for (3.5) to be consistent with this 
decay law cC2 must equal 2.0. 

A further relationship among the constants may be obtained by reference to 
the properties of the constant-stress layer adjacent to a wall. In  such a flow, 
convective transport is negligible and the production and dissipation rates of 
turbulence energy are equal, i.e. 8 = - u1u2dU,/dx2 = u9dU11dx2. Equation (3 .5)  
may consequently be written as 

- 

- u;- (e,l-G,2)+C,- ku2- - = 0, ;( ::)2 aiC2 a [ -d2u11du11 ax; ax, 

where x2 denotes the direotion normal to the wall and u, the friction velocity. 
Moreover, on noting the following experimental properties of the flow: 

- 
dU,ldx, M ~ , / 0 * 4 2 ~ , ,  k M 3 . 5 ~ 9 ,  U; z 1 * 6 ~ : ,  

and recalling that cE2 should take the value 2.0, it follows that 

Cc1 Z 2 - 3&,. (3 .6)  

4. A simpler version of the model for boundary-layer flows 
In two-dimensional boundary-layer flows (with z1 the primary direction of flow 

and x2 the primary direction of velocity gradient) the shear stress -w2 will 
usually be the only Reynolds stress to exert significant direct influence on the 
mean-flow development. Here we exploit this property of boundary-layer flows 
to deduce a form of turbulence model whose visual appearance (and, equally, the 
task of incorporating it in a practical calculation procedure) is much simpler than 
that of the one presented in $52 and 3 above. There are two basic principles 
involved; first, that instead of solving transport equations for each of the normal 
stresses, an equation is provided for their sum (strictly, half their sum), the 
turbulence energy. Second, the normal-stress terms which remain in the equations 
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for kinetic energy, shear stress and energy-dissipation rate are then taken as 
proportional to the turbulence energy. The reader may perhaps notice that the 
latter principle is very similar to one employed by Bradshaw, Atwell & Ferriss 
(1967). These authors, however, relate the shear stress to the turbulence energy 
and this practice effectively limits their procedure to external wall boundary 
layers wherein the shear stress does not change sign. 

Prom (2.12) and the defining equations which precede it it may be deduced that 
the form of the simulated shear stress and turbulence energy equations appro- 
priate to plane boundary layers is 

- 
(4.1) 

Dk -aU, - = --zG u ---+cC,- 
Dt ,ax, 

Besides 8 (for which a transport equation is provided below), (4.1) and (4.2) 
contain 2 and uTas unknowns. It is appropriate to eliminate these by using the 
plane shear layer results presented in table 1; this is the only necessary simplifica- 
tion. It will substantially simplify the final form, however, and, arguably, will not 
diminish the accuracy of the resultant model if, by the same means, u1u.2 also is 
eliminated in the coefficient of aUl/ax, in (4.1) and in the final term in (4.2). 
Lastly, the term u,u,aG/ax,, which contributes to the shear stress diffusion, is 
neglected on the grounds that the diffusion term as a whole is mainly of import- 
ante where mean velocity gradients are small, and in these regions u1 u2 auya;, 
will ordinarily be much smaller than u T a G / a x , .  

Thus, with c+l and c ~ ,  given the values 2.8 and 0.45, the following pair of 
equations results : 

- 

- 

-= -2.8 - ~ , ~ , + 0 * 0 7 k -  aul) +c$- a (kz -- au,u,) , (4.3) (;- ax, ax, 8 ax, 
D u x  

Dt 

Moreover, for the subclass of flows now under consideration, the transport 
equation for the energy dissipation rate, ( 3 4 ,  becomes 

Bs U i i a u ,  C,,sz 
Dt = ccl---- k ax, k (4.5) 

t It is of interest to note that if convective and diffusive transport is neglected (4.3) 

(4.7) 
- reduces to: -uluz = - o . o ~ ( P / c )  au,/ax,, 

which is equivalent to the formula used to relate the shear stress to the mean rate of strain 
in many turbulent viscosity models of turbulence (0.g. Spalding 1970; Jones & Launder 
1972). Moreover, if aUl/ax2 is eliminated from (4.4) by means of (4.6) the energy equation 
(again with transport neglected) maybe manipulated to become - G / k  = J(0.07) = 0.27, 
which, save for the value of the constant (0.27 instead of 0.3) is identical to Bradshaw, 
Ferris & Atwell's relation between stress and energy. 
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where the coeecient of the last term arises from replacing by 0.5k (cf. the top 
line of table 1). Equations (4.3)-(4.5) together with the mean momentum equa- 
tion 

comprise the proposed form of the model for boundary-layer flows. The model 
contains six constants to be determined from experiment. Two of these (c+, and 
c+,) have, for algebraic clarity, already been chosen. For the calculations pre- 
sented in $ 5  the remainder have been assigned the values noted in table 2. The 
entry ‘ computer optimization’ against the diffusion constants c, and c, means 
that for the flows considered in Q 5 many calculations were performed in which 
the constants were systematically varied. The values chosen are those which we 
believed gave the best overall agreement for the flows considered. 

Constant Values Basis for choice 

turbulence, Rotta (1962) 

Champagne et al. (1970). 

2.8 Return to isotropy of distorted 

0.45 Plane homogeneous shear flow, 

Cd1 

C@ 

cs 0.08 Computer optimization 
CEl 1.45 Near-wall turbulence (equation (3.6)) 
CEZ 2.0 Decay of grid turbulence 
C€ 0.13 Computer optimization 

TABLE 2. The empirical constants 

5. Comparison of predictions with experiment 
The calculations presented below have all been obtained by solving (4.3)-(4.6) 

by means of an adapted version of the finite-difference procedure of Patankar & 
Spalding (1970); details are provided by Hanjali6 (1970). The above transport 
equations are only appropriate for flow regions where the Reynolds number of 
the turbulence is high, and this means, of course, that in performing the calcula- 
tions the viscous sublayer region must be excluded. Consequently, for wall 
boundary layers boundary conditions are applied near (rather than at) the wall. 
Thus, except where otherwise stated, the velocity is matched to Patel’s (1965) 
version of the logarithmic law of the wall, the gradient of turbulence energy is 
set to zero, the mean momentum equation with convection neglected provides a 
formula for the shear stress and the energy-dissipation rate is equated to the 
generation rate. 

At an axis of symmetry the shear stress is made zero, whereas the gradient 
normal to the flow direction of the other dependent variables is set to zero. 
Finally, at free boundaries the shear stress is again made zero while the other 
variables are determined from the degenerate forms of their respective transport 
equations which result when derivatives with respect to x, are set to zero. 

The data which were uppermost in our mind when devising the model were our 
own measurements of fully developed asymmetric flow in a plane channel 
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FIGURE 2. Correlation coefficient and turbulence energy in asymmetric channel flow 
(Hanjalib & Launder 1972). -, predictions, ReM = 62000; 0, 0, experiment, R e M  = 
56 000. 

(Hanjali6 & Launder 1972). The asymmetry had been introduced by fixing ribs 
of square cross-section aligned normal to the flow and pitched 10 rib heights 
apart to one wall. Figure 1 shows the calculated and measured distributions of 
mean velocity and shear stress across the channel for a Reynolds number Re, 
(based on maximum velocity U,, and half the distance between plates) of about 
60000. The measured shear stress profile is that deduced from the streamwise 
pressure gradient and a Stanton tube measurement of the smooth-wall stress. 
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FIGTJRE 3. Turbulence energy balance in asymmetric channel flow. -, predictions. 
Experiment: 0, - (GdU, /dxz )D/ t&;  x , - [ d & ~ ) / d ~ ~ 1 D / 4 ~  ; 0 3  cD/'$z. 

In  the calculations, the mean velocity near the roughened wall has been 
matched to the equation 

which had been found by Hanjalid & Launder to correlate their data over an 
appreciable region near the rough wall. Agreement between calculation and 
experiment is satisfactory, including the non-coincidence of the positions of maxi- 
mum velocity and zero shear stress. In  figure 2 the hot-wire data of shear stress 
and turbulence energy are compared with calculated profiles. The strongly 
asymmetric nature of these profiles is again faithfully reproduced by the pre- 
dictions. Points to notice include the extensive region on the rough-wall side of 
the duct where (G/IC) is virtually constant, the absence of any such region 
near the smooth wall and the non-coincidence of the positions of minimum 
kinetic energy and zero stress. All these features are well predicted. 
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FIGURE 4. Velocity, shear-stress and turbulence energy profiles in symmetric annulus with 
small radius ratio. Re = 240000, r11r2 = 0.088. -, predictions; 0, 0, - - -, experiment 
(Lawn 1970). 

The turbulence energy balance for the above flow is shown in figure 3. The 
experimental values for generation and diffusion were measured directly; those 
for dissipation were obtained as the closing term. A feature of this asymmetric 
channel flow is that the diffusion term is of substantially greater importance than 
in a smooth channel. The calculated and measured diffusion fluxes are seen 
generally to be in satisfactory agreement. 

We have also made calculations of flow in a plane channel with smooth walls. 
In this case the predicted profiles of mean velocity and turbulence energy fall 
between the experimental data of Comte-Bellot (1965) and Laufer (1951) and 
hence may be said to lie within the experimental uncertainty. 
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- 

Lawn (1970) has made a very careful study of another strongly asymmetric 
internal flow: that which arises in a symmetric annulus where the radius of the 
core tube is only a small fraction of the outer containing tube (0.088). Figure 4 
compares his measured profiles of mean velocity, turbulence energy and shear 
stress with predictionst; for all profiles good agreement is displayed. 

For the boundary condition on mean velocity near the core tube, the additive constant 
in the logarithmic law was taken as 4.3 (rather than Patel's value of 5-45) in agreement 
with Lawn's data. A referee has pointed out that, in view of this departure of the velocity 
from the universal profile, there is some doubt as to whether the boundary condition used 
for kinetic energy (generation = dissipation) is still appropriate. The comparison of 
calculations and measurements in figure 5 suggests, however, that this local equilibrium 
assumption is still adequate. 
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FIGURE 6. Velocity and shear-stress proflles in annulus with rough core. -, predictions. 
Experiment (Lawn & Hamlin): 0,  Re = 71000; 0, Re = 182000. 

An interesting difference between the behaviour here and in the rough-smooth 
channel emerges on consideration of the relative position of maximum velocity 
and zero shear stress. In  figure 1 it was shown that ym lies nearer to the surface 
with the higher shear stress than yo; the reverse is found, however, in the smooth 
annulus. A turbulence energy balance for the flow is shown in figure 5. Agreement 
between the profiles of measured and predicted diffusion rates is not quite as 
close as for the plane channel considered earlier. Considering the difficulty of 
obtaining measurements of energy diffusion, however, the predictions can be 
taken as adequate. 

The last of the duct flows to be considered is that of Lawn & Hamlin (1969); 
this is the fully developed flow in a symmetric annulus with a roughened core 
tube, for a radius ratio of 0.56. The calculated and measured profiles of shear 
stress and mean velocity are seen, from figure 6, to be in excellent agreement. 

Attention is now turned to developing external wall boundary layers. Kleba- 
noff's (1955) measurements of a boundary layer developing in a uniform free 
stream are compared with predictions in figures 7 and 8; the momentum thick- 
ness Reynolds number is 7700. Agreement with the mean velocity and shear stress 
data is good but, for the energy profile, values are 15-20 % higher than those 
measured over much of the boundary layer, a discrepancy which is probably 
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FIGURE 7. Velocity, shear-stress and turbulence energy profiles in the wall boundary layer 
at uniform pressure. -, predictions. 0, 0, - - -, experiment (Klebanoff). 

greater than the uncertainty of the experimental data. Figure 7 shows that the 
difference can be diminished by increasing the value of c,; the consequent effects 
on the velocity and shear stress profiles are not distinguishable on the scale of 
the figures. Klebanoff obtained his energy balance by measuring the convective 
transport and production of energy directly, by estimating the dissipation rate 
from measurements of five of the nine terms in the dissipation term ( a ~ ~ l a x ~ ) ~ ,  and 
thus obtaining the diffusive flux as the closing term. It is generally supposed, 
however, that his estimate of E was too low by an appreciable amount and that 
this led to implausibly largevalues for the diffusion term; the discrepanoy between 

40 F L M  52 
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measurement and predictions shown in figure 8 is certainly consistent with this 
supposition. Townsend (1951) has made direct hot-wire measurements of the 
energy diffusion in a zero-pressure-gradient boundary layer and it is seen from 
figure 8 that these are in much better agreement with the predicted profile. 

Figure 9 compares the predicted velocity and shear-stress profiles in a plane 
wall jet with the experimental data of Tailland & Mathieu (1967). The shape of 
the mean velocity profile, like the displacement of the positions of zero stress and 
maximum velocity, is in agreement with measured results. However, the general 
level of shear stress is too high, an occurrence which causes the predicted growth 
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FIGURE 9. Velocity and shear stress profiles in plane wall jet. -, predictions; 

0, e, experiment (Tailland & Mathieu). 

rate of the wall jet to be about 20% greater than measurements suggest. At 
present we are uncertain whether these differences represent essential deficiencies 
of the present model or merely indicate that the boundary conditions used are 
not quite appropriate to the flow in question. For example, as remarked above, we 
adopted Patel’s value for the additive constant in the logarithmic law (5-45). 
However, in view of the substantial negative gradient of shear stress in the near- 
wall region of the flow, it is probable that a larger value would have been appro- 
priate. Moreover, there seems at least some doubt as to whether, in the experi- 
ments themselves, the free stream was genuinely at rest. Finally, it is remarked 
that in the calculations the direct influences of the normal stresses have been 
neglected; the term - a ( ~ :  - ~ ; ) / a x ~  has been omitted from the mean momentum 
equation and corresponding terms have been left out of the turbulence transport 
equations. Although these terms certainly do not dominate the flow’s evolution 
their omission may have contributed to the differences between the measured and 
the predicted growth rates. 

Lastly, we show the outcome of applying the model to the prediction of two 
free shear flows: the plane jet in stagnant surroundings and the plane mixing 
layer. The predicted behaviour of the plane jet is compared in figures 10 and 11 
with Bradbury’s (1965) data. Mean velocity and energy profiles are generally in 
satisfactory accord but the peak value of the predicted shear stress is some 15 % 
less than Bradbury’s measurements. As a result, the generation term in the 
energy-balance equation is too small in the neighbourhood of x2+ the distance 
from the axis at which the velocity is one half that on the centre-line. Apart from 
this defect, the calculated and measured energy balances shown in figure 11 are in 
satisfactory agreement. 

- -  

40-2 
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The calculations for the plane mixing layer shown in figure 12 likewise display 
reasonably good agreement with the data of Wygnanski & Fiedler (1970). It is 
seen, however, that the predictions of the turbulence energy and shear stress are 
displaced relative to the measurements towards the zero-velocity boundary of the 
flow, xzo;  the displacement is about 15 o/o of the width of the shear flow. A further 
difference between measurement and prediction is in the rate of spread of the 
mixing layer. Wygnanski & Fiedler's data show the tangent of the angle of 
spread to be about 0.20, whereas the calculated value is 0.15. The latter, however, 
corresponds with the earlier measurements of Liepmann & Laufer (1967). 
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6. Concluding remarks 
The preceding paragraphs have drawn comparisons between experimental 

data of various quasi-parallel shear flows and computer solutions of the same flow 
based upon the model of 3 4. In  many contexts, the range of flows examined would 
be considered a wide one and the agreement between prediction and measurement 
good.? We should remember, however, that these flows are still appreciably less 

In  addition to tho flows considered in 3 4, the reader is reminded that the more general 
form of the model presented in §§2 and 3 was also consistent with experimental data on the 
decay of turbulence behind a grid, the Reynolds stress levels in a plane homogeneous shear 
layer and the return (in the absence of mean strain) of distorted turbulence towards 
isotropy. 
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, experimental (Wygnanski & Fielder 1970). 

complex than are the majority of industrially important shear flows for which 
calculation procedures are needed. For such flows we should need to  employ the 
complete stress model rather than the simplified version of 54. In conclusion 
therefore, it  is perhaps appropriate that the approximations made in $$ 2 and 3 to 
procure closure should be rescrutinized. 

The simulated terms in the Reynolds stress equations lend themselves to more 
direct comparison with experiment than do those in the dissipation equation and, 
for this reason, they are considered first. The comparisons made with the measure- 
ments of kinetic energy diffusion in figures 3 ,5 ,8  and 11 provide substantial 
support for the gradient-diffusion hypothesis represented by equation (2.3).  
The outcome is not altogether surprising for, as is shown in appendix A, the 
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representation follows from the neglect of convective transport of the triple 
correlation. Whether such an approximation of diffusive transport will prove 
adequate in flows with recirculation remains to be seen. The least controversial 
of the approximations concerns the representation of the dissipation terms in the 
stress equations, for a t  high enough Reynolds numbers the dissipative motions 
will assuredly be isotropic. Of course, in flows past solid boundaries there must 
inevitably be a region near the surface where the Reynolds number of the turbu- 
lence is low and here notions of local isotropy must be discarded. In  these regions, 
not withstanding some exploratory calculations by Donaldson (1968), there 
remains considerable doubt as to the appropriate modelling of the dissipation 
processes (and of the other terms in the stress equations also). We regard this as 
an important area for further research. 

The experimental evidence in support of Rotta's approximation of the pressure 
strain term has been cited in 9 2 and by several other workers. Suffice it to add here 
that it combines the virtues of physical plausibility and algebraic simplicity. The 
latter cannot be claimed for our simulation of the second part of the pressure 
strain term, but by adopting a relatively general form for the tensor a? we were 
able to satisfy a great many kinematic constraints and this has apparently led to a 
satisfactory approximation of the term.$ We believe that near a wall, where the 
rate of change of mean velocity gradient is large, it will be desirable to improve on 
the assumption that X@x, is uniform in the integral of (2.4), at any rate if the 
normal stresses are to be well predicted. However when the flow is nearly parallel 
t o  the wall the normal stresses do not exert much direct influence on the mean 
flow development so the matter may be only of academic interest. 

Turning now to the equation for dissipation, it may be said that the form chosen 
for both the generation and destruction terms is suggested by arguments of local 
isotropy and is consistent with the practice adopted in closing the stress equations. 
The forms adopted for these terms are, in fact, equivalent to the approximations 
of Chou (1945), Davidov (1961) and Daly & Harlow (1970). I n  treating the 
diffusion of dissipation Davidov provided a closed set of transport equations for 
each component "lu,; we decided not t o  adopt such an elaborate closure. As is 
shown in appendix A, simplification of those equations leads t o  the much more 
tractable gradient-like representation adopted in 3 3. If t,his form should prove to 
possess too limited validity, the more general version, equation (A7), could be 
employed without significantly increasing computation time. 

Lastly we draw attention to the absence from our model of any explicit 
recognition of the intermittent character of the turbulence near the boundary 
of the shear flow with a quiescent stream. Of course, for the engineer, the more 

i- Of tho flows where diffusion measurements were available to us, two were fully 
developed flows where convection is, by definition, zero and the other two were equilibrium 
flows in zero pressure gradients, where convective transport is small. 

$ The second part of the pressure-strain correlation is instrumental in causing turbu- 
lence-driven secondary flows in straight ducts. Productions of this type of flow thus provide 
a very sensitive indicator of the satisfactoriness (or otherwise) of the approximation chosen 
for that term. It appears from the calculations of Launder & Ying (1971) that the form 
given in 0 2 does predict this occurrence and the offect of turbulence driven secondary flows 
in square ducts within the accuracy of present measurements. 
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of the details of turbulence that can be ignored the better, but it is perhaps 
significant that our calculations are in less satisfactory agreement with measure- 
ments in those flows where a free-stream boundary is present, particularly where 
the stream is at rest. Whether, in practice, the aerodynamicist will ever find it 
economically worth while to calculate the time-dependent behaviour of the un- 
dulating outer edge of the shear flow seems, however, to be very much a matter of 
conjecture. 

The research whose outcome is presented in this paper has been sponsored by 
the Berkeley Nuclear Laboratories of the CEGB. We are pleased to acknowledge 
this support and also the keen interest shown in the work by the Board's staff. 
We also wish to record that the work has benefited from conservations with 
colleagues at  Imperial College, particularly with Mr P. Bradshaw, Dr W. P. 
Jones and Mr W. Rodi. 

Appendix A. Simulation of the turbulent diffusive transport 
Some support for the closure approximations expressed by (2.3) and (3.4) may 

be drawn from consideration of the exact transport equations for the correlation 
iii question. Let us first consider the equation for triple velocity correlation, which 
for high turbulence Reynolds numbers may be written as 

I11 

We simplify the quadruple correlation I11 by recourse to a proposition of 
Millionshtchikov (1941), i.e. that when the triple correlations are small and their 
distribution properties do not differ substantially from those of a Gaussian one, 
the quadruple correlations may be approximated in terms of the second-order 
correlations by the formulae which are strictly fulfilled for the normal law. Thus 
it is presumed that 

-- -- -- 
uiui U k  u, = uiuj . UkUl f ui U k  . u p l  + UiUl. U k U j  (A 2 )  

and, hence, that the sum of terms I1 and I11 may be written as 

From an examination of Hanjalii: & Launder's (1972) measurements of asym- 
metric flow in a plane channel we have found that, in their experiments, the right- 
hand side of (A 3) was generally of the same sign as and several times larger than 
term I in (A I), especially in regions where the triple velocity correlations were of 



Turbulence in thin shear flows 633 

importance. For wall boundary layers, at  any rate, it is thus reasonable that term 
I should be neglected. 

There remains the correlation between pressure fluctuations and Reynolds 
stress (IV) to be considered. An exact expression for this term may be arrived at  
by precisely the same path as that leading to equation (2.4). As Chou (1945) has 
shown, the resultant expression contains two types of term, one involving just 
fluctuating velocity correlations and the other expressing the influence of the 
mean rate of strain on the pressure-stress correlation. It is consistent with our 
practice in arriving at  (2.6) and (2.10) to approximate the latter process by 
groups of terms of the form upu,u,8U,/ax,. We have, however, neglected correla- 
tions of this type in term I and we likewise do SO here.? Accordingly the pressure- 
stress correlation is assumed to be adequately represented by 

the form of the right-hand side being suggested by the corresponding a,pproxi- 
mation in the Reynolds stress equation (equation (2.5)). 

Finally, on neglect of the convective transport term from (A 1) and with the 
substitution of the approximations discussed in the above paragraph, the 
following algebraic expression emerges for uiujuk: 

which is identical to (2.3) in the main text. 
A similar treatment may likewise be applied to the components of the diffusion 

of dissipation, uuk(aui/ax1)2, which for brevity we denote by Qk. By applying to 
the exact transport equation for Qk approximations at the same level as those 
used in $ 3  to close the equation for F ,  the following form is obtained: 

On neglecting the convective transport, (A6) may be rearranged to give the 
following explicit algebraic equation for Qk : 

Now, Qk is mainly of importance in $he vicinity of a wall where gradients in 
dissipation rates are large. It is thus safe to assume that the last term in square 
brackets is small in comparison with the first. Moreover, in boundary-layer flows, 
at  any rate, the second term in brackets is negligible too, since the subscript k will 
denote the direction normal to the main flow, and Uk and its derivatives are 
negligibly small. Under these circumstances the equation is adequately approxi- 
mated by 

which is the form adopted in 3 3. 

I is. 
Though admittedly these pressure-stress terms are not necessarily small even if term 
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Appendix B. The dissipation length as normalizing scale for one-dimen- 
sional spectra 

The analysis of the main text brings into prominence t,he scalar turbulence 
quantities lc and E .  Indeed, for boundary-layer flows it is these variables (together 
with the shear stress - G) which are determined by way of transport equations. 
Implicit in the evolution of the forms of these equations is the notion that the 
directly influential parts of the turbulent motion can be characterized by a single 
length-scale parameter. The scale which suggests itself is the so-called dissipation 
length scale 1, defined as lcgle. 

To provide some basis for assessing the reasonableness of this assumption, 
figures 13,14 and 15 show some of our measurements (Hanjalid & Launder 1972) 
of one-dimensional spectra normalized with the dissipation length scale. The flow 
geometry, as mentioned in the main text, is a plane channel with one rough and 
one smooth surface. This gives rise to two quite dissimilar flows in the vicinity of 
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the walls dominated by the adjacent surface and, over a central region of the 
channel, to a complex flow structure wherein the two wall flows interact. The flow 
considered is thus not a simple one and it arguably provides a substantial test of 
the single-length-scale hypothesis. 

Figure 13 shows the normalized energy spectra & ( K ~ Z ~ ) - ~  at seven positions in 
the channel from near the smooth surface (x , /D = 0) to near the rough wall 
(x2/D = I). Clearly for values of K ~ Z ~  up to about 20 the curves are sensibly 
universal. As is seen in figure 14, the shear-stress spectrum displays a roughly 
comparable level of universality over the same range of wavenumbers. Here it is 

t The normalized spectral density ~ & ( K ~ Z ~ )  is defined as 

$ i j ( K i l c )  P < j ( K i l s ) / - >  

where Pii is the un-normalized spectra of u,uj thus F i j ( ~ l Z s )  d ( ~ , l , )  = - ( sum 
pondingly, for the spectra, of triple correlation 

$ i j ,  z ( ~ l l g )  ui uj(~1 Is) uL(Kllg)/ui uj ut. 
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mentioned, however, that the spectrum measured at x2/D = 0.146 (which is 
approximately coincident with the surface of zero shear stress) has not been 
included. It was left out because $ 1 2 ( ~ 1 Z , )  took values of opposite sign in different 
parts of the spectrum. (The result is attributable to a substantial diffusion of 
stress from the rough wall region in a middle range of wavenumbers.) So, while 
overall the spectrum is reasonably universal, its profile near the plane of zero 
shear stress is quite different from those a t  other locations in the flow. 

Figure 15 shows normalized spectra of triple correlations representing the 
diffusion flux of shear stress (i[$12,2(~1Z,) + $ 2 2 . 1 ( ~ l Z e ) ] )  and of components of the 
normal stresses. For these measurements only three positions in the channel were 
examined. Here there is more variation from one position to  another than was the 
case with the double correlation spectra. Bearing in mind, however, the difficulty 
of obtaining accurate spectra of triple correlations, the scatter may be considered 
to  be not unreasonably large. 
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